Skip to content

Novel study maps infant brain growth via MRI in first three months of life.

A recent study conducted by researchers at the University of California and the University of Hawaii demonstrates a new approach to measuring early brain development of infants, resulting in more accurate whole brain growth charts and providing the first estimates for growth trajectories of subcortical areas during the first three months after birth. Assessing the size, asymmetry and rate of growth of different brain regions could be key in detecting and treating the earliest signs of neurodevelopmental disorders, such as autism or perinatal brain injury.

For the first time, researchers used magnetic resonance imaging (MRI) of the newborn brain to calculate the volume of multiple brain regions and to map out regional growth trajectories during the infant’s first 90 days of life. The study followed the brain growth of full term and premature babies with no neurological or major health issues.

A better understanding of when and how neurodevelopmental disorders arise in the postnatal period may help assist in therapeutic development, while being able to quantify related changes in structure size would likely facilitate monitoring response to therapeutic intervention. Early intervention during a period of high neuroplasticity could mitigate the severity of the disorders in later years.

For more than two centuries, clinicians have tracked brain growth by measuring the outside of the infant’s head with a measuring tape. The results are then plotted on a percentile chart to indicate if normal growth patterns exist. While the measurement is helpful for observing growth, it does not reveal if the individual structures within the brain are developing normally.

On average, researchers found the newborn brain grows one percent each day immediately following birth but slows to 0.4 percent per day by three months. In general for both sexes, the cerebellum, which is involved in motor control, grew at the highest rate, more than doubling volume in 90 days. The hippocampus grew at the slowest rate, increasing in volume by only 47 percent in 90 days, suggesting that the development of episodic memory is not as important at this stage of life.

The team found that being born a week premature, for example, resulted in a brain four to five percent smaller than expected for a full term baby. The brains of premature babies actually grow faster than those of term-born babies, but that’s because they’re effectively younger, and younger means faster growth.  At 90 days post-delivery, however, premature brains were still two percent smaller. The brain’s rapid growth rates near birth suggest that inducing early labour, if not clinically warranted, may have a negative effect on the infant’s neurodevelopment.

The study also found that many asymmetries in the brain are already established in the early postnatal period, including the right hippocampus being larger than the left, which historically, has been suggested to occur in the early adolescent years. Cerebral asymmetry is associated with functions such as dexterity and language abilities.

Next steps involve continuing to make advances in the application of different MRI modalities to examine the newborn brain. MRI provides high quality images of different types of tissue and does not involve radiation, like computed tomography (CT). Future research will investigate how brain structure sizes at birth and subsequent growth rates are altered as a result of alcohol and drug consumption during pregnancy.

The findings give us the medical community deeper understanding of the relationship between brain structure and function when both are developing rapidly during the most dynamic postnatal growth phase for the human brain.

Source:  The University of California, San Diego

Novel study maps infant brain growth in first 3 months of life using MRI technology - neuroinnovations

Healthinnovations View All

Michelle Petersen is the founder of Healthinnovations, having worked in the health and science industry for over 21 years, which includes tenure within the NHS and Oxford University. Healthinnovations is a publication that has reported on, influenced, and researched current and future innovations in health for the past decade.

Michelle has been picked up as an expert writer for Informa publisher’s Clinical Trials community, as well as being listed as a blog source by the world’s leading medical journals, including the acclaimed Nature-Springer journal series.

Healthinnovations is currently indexed by the trusted Altmetric and PlumX metrics systems, respectively, as a blog source for published research globally. Healthinnovations is also featured in the world-renowned BioPortfolio, BioPortfolio.com, the life science, pharmaceutical and healthcare portal.

Most recently the Texas A&M University covered The Top 10 Healthinnovations series on their site with distinguished Professor Stephen Maren calling the inclusion of himself and his team on the list a reflection of “the hard work and dedication of my students and trainees”.

Michelle Petersen’s copy was used in the highly successful marketing campaign for the mega-hit film ‘Jumanji: The Next Level, starring Jack Black, Karen Gilian, Kevin Hart and Dwayne ‘The Rock’ Johnson. Michelle Petersen’s copywriting was part of the film’s coverage by the Republic TV network. Republic TV is the most-watched English language TV channel in India since its inception in 2017.

An avid campaigner in the fight against child sex abuse and trafficking, Michelle is a passionate humanist striving for a better quality of life for all humans by helping to provide traction for new technologies and techniques within healthcare.

Leave a Reply

Translate »