A glucose meter which provides precise, continuous monitoring.

University of Illinois researchers have developed a new continuous glucose monitoring material that changes colour as glucose levels fluctuate, and the wavelength shift is so precise that doctors and patients may be able to use it for automatic insulin dosing, something not possible using current point measurements like test strips.  The study is published in Advanced Materials.

There are significant limitations to current continuous glucose monitoring technologies.  The systems available today all have some combination of limited sensitivity, limited precision and frequent recalibration. Using today’s systems, the medical community can determine trends in glucose levels, but without frequent recalibration, researchers don’t have the accuracy or reliability to use that to make insulin dosing decisions or to drive autonomous dosing.

The Illinois sensor is made of hydrogel, a soft elastic jelly-like material, laced with boronic acid compounds. Boronic acid binds to glucose, causing the gel to swell and expand as the glucose concentration rises. Embedded within the hydrogel is a photonic crystal made of tiny, carefully arranged beads. A photonic crystal is like a mirror that only reflects one wavelength of light while the rest of the spectrum passes through. As the hydrogel expands, the reflected color shifts from blue to green to red.   See a video of the colour change here.

Researchers have previously explored the possibility of using boronic acid hydrogels for glucose detection, because they are not prone to interference from most factors in the bloodstream. However, they have been met with a specific challenge inherent to the chemistry. Boronic acid likes glucose so much that, if there isn’t enough glucose to go around, two boronic acids will bind to one glucose. This causes the hydrogel to shrink before the glucose concentration gets high enough for it to expand again.

The Illinois researchers devised a solution to this problem by introducing a third chemical, called a ‘volume resetting agent,’ to bind up the boronic acid before the glucose is added, pre-shrinking the gel and giving a baseline for measurements. This development enabled the Illinois researchers to capitalize on the advantages of a boronic acid system without the limitation of shrinking at lower concentrations.

The colour-changing material is simple and low-cost to manufacture, a square inch of hydrogel could be enough for up to 25 patients.

The researchers envision the hydrogel as part of a subcutaneous system or a sophisticated device that taps into the bloodstream, an insulin pump, for example. However, the application they are most excited about is in short-term continuous monitoring of patients hospitalized or in intensive care units, when patients are most critically in need of continuous monitoring, diabetic or not.

The sensor would be put on the end of a fiber optic cable, for example, and threaded into the bloodstream along with IVs or other monitors.  The medical team could just slide it into an open port. Then monitor the patient for several days or longer.

Source:  University of Illinois

 

Fig. 1.  Before glucose is added, the hydrogel glucose meter is blue.  Fig. 2.  The gel changes colour from blue to green to red as the glucose level rises.  Photo courtesy of Chunjie Zhang.
Fig. 1. Before glucose is added, the hydrogel glucose meter is blue. Fig. 2. The gel changes colour from blue to green to red as the glucose level rises. Photo courtesy of Chunjie Zhang.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.