Skip to content

Researchers identify link between diabetes and Alzheimer’s Disease.

Researchers from Princeton University and the University of California-San Diego (UCSD) recently found that an immune-system protein called MHCI, or major histocompatibility complex class I, moonlights in the nervous system to help regulate the number of synapses, which transmit chemical and electrical signals between neurons. The researchers report in the Journal of Neuroscience that in the brain MHCI could play an unexpected role in conditions such as Alzheimer’s disease, type II diabetes and autism.

MHCI proteins are known for their role in the immune system where they present protein fragments from pathogens and cancerous cells to T cells, which are white blood cells with a central role in the body’s response to infection. This presentation allows T cells to recognize and kill infected and cancerous cells.

In the brain, however, the researchers found that MHCI immune molecules are one of the only known factors that limit the density of synapses, ensuring that synapses form in the appropriate numbers necessary to support healthy brain function. MHCI limits synapse density by inhibiting insulin receptors, which regulate the body’s sugar metabolism and, in the brain, promote synapse formation.

The team state that MHCI’s role in ensuring appropriate insulin signalling and synapse density raises the possibility that changes in the protein’s activity could contribute to conditions such Alzheimer’s disease, type II diabetes and autism. These conditions have all been associated with a complex combination of disrupted insulin-signalling pathways, changes in synapse density, and inflammation, which activates immune-system molecules such as MHCI.

Patients with type II diabetes develop insulin resistance in which insulin receptors become incapable of responding to insulin, the reason for which is unknown. Similarly, patients with Alzheimer’s disease develop insulin resistance in the brain that is so pronounced some have dubbed the disease type III diabetes.

The results suggest that changes in MHCI immune proteins could contribute to disorders of insulin resistance.  For example, chronic inflammation is associated with type II diabetes, but the reason for this link has remained a mystery. Our results suggest that inflammation-induced changes in MHCI could have consequences for insulin signaling in neurons and maybe elsewhere.

MHCI levels also are dramatically altered in the brains of people with Alzheimer’s disease. Normal memory depends on appropriate levels of MHCI. The team published a 2013 paper in the journal Learning and Memory that found that mice bred to produce less functional MHCI proteins exhibited striking changes in the function of the hippocampus, a part of the brain where some memories are formed, and had severe memory impairments.

MHCI levels are altered in the Alzheimer’s brain, and altering MHCI levels in mice disrupts memory, reduces synapse number and causes neuronal insulin resistance, all of which are core features of Alzheimer’s disease.

Links between MHCI and autism also are emerging, with autistic patients having more synapses than usual in specific brain regions. In addition, several autism-associated genes regulate synapse number, often via a signalling protein known as mTOR (mammalian target of rapamycin). In the current study the researchers found that mice with reduced levels of MHCI had increased insulin-receptor signaling via the mTOR pathway, and, consequently, more synapses. When elevated mTOR signalling was reduced in MHCI-deficient mice, normal synapse density was restored.

Thus MHCI and autism-associated genes appear to converge on the mTOR-synapse regulation pathway. This is intriguing given that inflammation during pregnancy, which alters MHCI levels in the fetal brain, may slightly increase the risk of autism in genetically predisposed individuals.  The study shows that up-regulating MHCI is essential for the maternal immune response, but changing MHCI activity in the fetal brain when synaptic connections are being formed could potentially affect synapse density.

While it is known that both insulin-receptor signaling increases synapse density, and MHCI signalling decreases it, the researchers are the first to show that MHCI actually affects insulin receptors to control synapse density.

The idea that there could be a direct interaction between these two signalling systems comes as a great surprise.  This discovery not only will lead to new insight into how brain circuitry develops but to new insight into declining brain function that occurs with aging.  Particularly, the research suggests a possible functional connection between type II diabetes and Alzheimer’s disease.

Type II diabetes has recently emerged as a risk factor for Alzheimer’s disease but it has not been clear what the connection is to the synapse loss experienced with Alzheimer’s disease.  Given that type II diabetes is accompanied by decreased insulin responsiveness, it may be that the MHCI signalling becomes able to overcome normal insulin signalling and contribute to synapse decline in this disease.

Research during the past 15 years has shown that MHCI lives a prolific double-life in the brain. The brain is immune privileged, meaning the immune system doesn’t respond as rapidly or as effectively to perceived threats in the brain. Dozens of studies have shown, however, that MHCI is not only present throughout the healthy brain, but is essential for normal brain development and function. A 2013 paper from the lab published in the journal Molecular and Cellular Neuroscience showed that MHCI is even present in the fetal-mouse brain, at a stage when the immune system is not yet mature.

Many people thought that immune molecules like MHCI must be missing from the brain.  It turns out that MHCI immune proteins do operate in the brain, they just do something completely different. The dual roles of these proteins in the immune system and nervous system may allow them to mediate both harmful and beneficial interactions between the two systems.

Source:  Princeton University

 

This section of adult mouse cerebellum shows insulin receptors (green) and calbindin (red), which in this case is present in the cerebellar neurons known as Purkinje cells. Insulin receptors are highly expressed in fibers that form synapses onto Purkinje cells, which express MHCI. Thus both in the cerebellum and hippocampus (previous image), insulin receptors are highly expressed in cells that form synapses onto MHCI-expressing neurons, which suggests MHCI and insulin receptors could interact, either directly or indirectly, in the living brain.  Credit: Image courtesy of Lisa Boulanger, Department of Molecular Biology.
This section of adult mouse cerebellum shows insulin receptors (green) and calbindin (red), which in this case is present in the cerebellar neurons known as Purkinje cells. Insulin receptors are highly expressed in fibers that form synapses onto Purkinje cells, which express MHCI. Thus both in the cerebellum and hippocampus (previous image), insulin receptors are highly expressed in cells that form synapses onto MHCI-expressing neurons, which suggests MHCI and insulin receptors could interact, either directly or indirectly, in the living brain. Credit: Image courtesy of Lisa Boulanger, Department of Molecular Biology.

Healthinnovations View All

Michelle Petersen is the founder of Healthinnovations, having worked in the health and science industry for over 21 years, which includes tenure within the NHS and Oxford University. Healthinnovations is a publication that has reported on, influenced, and researched current and future innovations in health for the past decade.

Michelle has been picked up as an expert writer for Informa publisher’s Clinical Trials community, as well as being listed as a blog source by the world’s leading medical journals, including the acclaimed Nature-Springer journal series.

Healthinnovations is currently indexed by the trusted Altmetric and PlumX metrics systems, respectively, as a blog source for published research globally. Healthinnovations is also featured in the world-renowned BioPortfolio, BioPortfolio.com, the life science, pharmaceutical and healthcare portal.

Most recently the Texas A&M University covered The Top 10 Healthinnovations series on their site with distinguished Professor Stephen Maren calling the inclusion of himself and his team on the list a reflection of “the hard work and dedication of my students and trainees”.

Michelle Petersen’s copy was used in the highly successful marketing campaign for the mega-hit film ‘Jumanji: The Next Level, starring Jack Black, Karen Gilian, Kevin Hart and Dwayne ‘The Rock’ Johnson. Michelle Petersen’s copywriting was part of the film’s coverage by the Republic TV network. Republic TV is the most-watched English language TV channel in India since its inception in 2017.

An avid campaigner in the fight against child sex abuse and trafficking, Michelle is a passionate humanist striving for a better quality of life for all humans by helping to provide traction for new technologies and techniques within healthcare.

One thought on “Researchers identify link between diabetes and Alzheimer’s Disease. Leave a comment

  1. Great day! This post could not be written any greater! Reading this post reminds me of my previous room mate! He always kept chatting about this. I will forward this write-up to him. Fairly certain he will have a excellent read. Thanks for sharing!

Leave a Reply

Translate »