Skip to content

Scientists identify molecule essential to maintaining the brain’s supply of stem cells.

Fat and sugar aren’t usually considered healthy staples, but scientists at Georgia Regents University have found that a biological fat with a sugar attached is essential for maintaining the brain’s store of stem cells.  Neural stem cells help the brain develop initially, then repopulate brain cells lost to usual cell turnover as well as to a trauma or malady, such as a head injury or stroke.

While the cell population and activity decrease as a natural part of aging, the team are studying how neural stem cells are normally maintained with the long-term goal of helping the supply stay robust despite aging as well as infirmity.  They have discovered that in mice missing the sugar containing lipid ganglioside GD3, neural stem cells have a dramatically impaired ability to self-renew.

The scientists focused on brain areas with typically the largest supply of neural stem cells: an area just below several midbrain cavities filled with cerebrospinal fluid, called the subventricular zone, as well as the hippocampus, a major center for learning and memory.

Mice missing ganglioside GD3 on the membranes of neural stem cells had much smaller supplies of the cells in these key areas throughout life and expressed signs of lost hope with behaviors such as not actively seeking dry land when placed in water. Additionally, the mice had impaired maintenance of the area of the brain involved in the sense of smell as well as the portion of the hippocampus that enables formation of new memories.  The changes, which correlate with aging or illness, were corrected when GD3 was restored.

If GD3 is missing, the researchers found these neural stem cells cannot be maintained throughout life; they are reduced by a big percentage even in a one-month-old mouse. In fact, by one month of life, there was about a 60 percent reduction in the supply and by six months, which is considered aged in a mouse, there were only a handful of neural stem cells remaining.  The scientists noted that in healthy young mice, GD3 is abundant but seems to naturally decrease with age.

In a paper published in the journal PNAS in 2013 the team showed that GD3 is the predominant ganglioside in mouse neural stem cells where it interacts with epidermal growth factor receptors, also found on the cell surface. GD3 plays an important role in growth factor signaling, which, in turn, tells neural stem cells to proliferate or die.

In a normal situation, that growth factor enables the neural stem cells to reproduce more stem cells.  This gives the medical community a better idea about how the neural stem cell population is maintained over the human lifespan.

The researcher’s long-term goal is to use endogenous neural stem cells for repair of brain or spinal cord damage, so they need to learn how they proliferate, how to keep them inside the brain.

The group are optimistic that one day manipulating levels of growth factors and sugar-containing lipids will enable a more steadfast supply of neural stem cells throughout life, although getting the substances into the brain is a challenge. It’s already known that, at least in rats, exercise can also help.

Neural stem cells are able to self-renew, in theory at least, forever. Their ability to maintain a steady supply of themselves and to differentiate into different types of brain cells are their most important properties.

Next steps include examining the role of other growth factors and gangliosides.

Source:  Georgia Regents Medical Center

 

Accelerated loss of self-renewal ability in GD3-KO NSCs is accompanied by a decreased EGFR expression level.  Immunofluorescence of GD3 and nestin stain in neurospheres from GD3S+/+ and GD3S−/− mice.  Interaction of ganglioside GD3 with an EGF receptor sustains the self-renewal ability of mouse neural stem cells in vitro.  Wang et al 2013.
Accelerated loss of self-renewal ability in GD3-KO NSCs is accompanied by a decreased EGFR expression level. Immunofluorescence of GD3 and nestin stain in neurospheres from GD3S+/+ and GD3S−/− mice. Interaction of ganglioside GD3 with an EGF receptor sustains the self-renewal ability of mouse neural stem cells in vitro. Wang et al 2013.

Healthinnovations View All

Michelle Petersen is the founder of Healthinnovations, having worked in the health and science industry for over 21 years, which includes tenure within the NHS and Oxford University. Healthinnovations is a publication that has reported on, influenced, and researched current and future innovations in health for the past decade.

Michelle has been picked up as an expert writer for Informa publisher’s Clinical Trials community, as well as being listed as a blog source by the world’s leading medical journals, including the acclaimed Nature-Springer journal series.

Healthinnovations is currently indexed by the trusted Altmetric and PlumX metrics systems, respectively, as a blog source for published research globally. Healthinnovations is also featured in the world-renowned BioPortfolio, BioPortfolio.com, the life science, pharmaceutical and healthcare portal.

Most recently the Texas A&M University covered The Top 10 Healthinnovations series on their site with distinguished Professor Stephen Maren calling the inclusion of himself and his team on the list a reflection of “the hard work and dedication of my students and trainees”.

Michelle Petersen’s copy was used in the highly successful marketing campaign for the mega-hit film ‘Jumanji: The Next Level, starring Jack Black, Karen Gilian, Kevin Hart and Dwayne ‘The Rock’ Johnson. Michelle Petersen’s copywriting was part of the film’s coverage by the Republic TV network. Republic TV is the most-watched English language TV channel in India since its inception in 2017.

An avid campaigner in the fight against child sex abuse and trafficking, Michelle is a passionate humanist striving for a better quality of life for all humans by helping to provide traction for new technologies and techniques within healthcare.

One thought on “Scientists identify molecule essential to maintaining the brain’s supply of stem cells. Leave a comment

  1. Simply want to say your article is as astounding.
    The clearness in your post is just cool and i can assume you are an expert
    on this subject. Fine with your permission let me to grab your feed to keep
    updated with forthcoming post. Thanks a million and
    please carry on the enjoyable work.

Leave a Reply

Translate »