Skip to content

Vital new knowledge about the human brain’s plasticity uncovered.

The brain’s plasticity and its adaptability to new situations do not function the way researchers previously thought, according to a new study published in the journal Cell. Earlier theories are based on laboratory animals, but now researchers at Karolinska Institutet have studied the human brain.

The results show that a type of support cell, the oligodendrocyte, which plays an important role in the cell-cell communication in the nervous system, is more sophisticated in humans than in rats and mice, a fact that may contribute to the superior plasticity of the human brain.

The learning process takes place partly by nerve cells creating new connections in the brain. Human nerve cells are therefore crucial for how people store new knowledge. But it is also important that nerve impulses travel at high speed and a special material called myelin plays a vital role. Myelin acts as an insulating layer around nerve fibres, the axons, and large quantities of myelin speed up the nerve impulses and improve function. When a person learns something new, myelin production increases in the part of the brain where learning occurs. This interplay, where the brain’s development is shaped by the demands that are imposed on it, is what we know today as the brain’s plasticity.

Myelin is made by cells known as oligodendrocytes. In the last few years, there has been significant interest in oligodendrocytes and numerous studies have been conducted on mice and rats. These studies have shown that when the nerve cells of laboratory animals need more myelin, the oligodendrocytes are replaced. This is why researchers have assumed that the same also applies in humans.

Researchers at Karolinska Institutet and their international collaborators have shown that this is not the case. In humans, oligodendrocyte generation is very low but despite this, myelin production can be modulated and increased if necessary. In other words, the human brain appears to have a preparedness for it, while in mice and rats, increased myelin production relies on the generation of new oligodendrocytes.

In the study in question, researchers have studied the brains of 55 deceased people in the age range from under 1 to 92 years. They were able to establish that at birth most oligodendrocytes are immature. They subsequently mature at a rapid rate until the age of five, when most reach maturity. After this, the turnover rate is very low. Only one in 300 oligodendrocytes are replaced per year, which means that humans keep most of these cells their whole lives. This was apparent when the researchers carbon-dated the deceased people’s cells. The levels of carbon-14 isotopes rose sharply in the atmosphere after the nuclear weapons tests during the Cold War, and they provided a date mark in the cells. By studying carbon-14 levels in the oligodendrocytes, researchers have been able to determine their age.

The team were surprised by this discovery. In humans, the existing oligodendrocytes modulate their myelin production, instead of replacing the cells as in mice. It is probably what enables humans to adapt and learn faster. Production of myelin is vital in several neurological diseases such as MS.  The medical community now has new basic knowledge to build upon.

Source:  The Karolinska Institutet

 

Oligodendrocytes in culture.  Credit:  Inserm - All rights reserved.
Oligodendrocytes in culture. Credit: Inserm – All rights reserved.

 

Healthinnovations View All

Michelle Petersen is the founder of Healthinnovations, having worked in the health and science industry for over 21 years, which includes tenure within the NHS and Oxford University. Healthinnovations is a publication that has reported on, influenced, and researched current and future innovations in health for the past decade.

Michelle has been picked up as an expert writer for Informa publisher’s Clinical Trials community, as well as being listed as a blog source by the world’s leading medical journals, including the acclaimed Nature-Springer journal series.

Healthinnovations is currently indexed by the trusted Altmetric and PlumX metrics systems, respectively, as a blog source for published research globally. Healthinnovations is also featured in the world-renowned BioPortfolio, BioPortfolio.com, the life science, pharmaceutical and healthcare portal.

Most recently the Texas A&M University covered The Top 10 Healthinnovations series on their site with distinguished Professor Stephen Maren calling the inclusion of himself and his team on the list a reflection of “the hard work and dedication of my students and trainees”.

Michelle Petersen’s copy was used in the highly successful marketing campaign for the mega-hit film ‘Jumanji: The Next Level, starring Jack Black, Karen Gilian, Kevin Hart and Dwayne ‘The Rock’ Johnson. Michelle Petersen’s copywriting was part of the film’s coverage by the Republic TV network. Republic TV is the most-watched English language TV channel in India since its inception in 2017.

An avid campaigner in the fight against child sex abuse and trafficking, Michelle is a passionate humanist striving for a better quality of life for all humans by helping to provide traction for new technologies and techniques within healthcare.

3 thoughts on “Vital new knowledge about the human brain’s plasticity uncovered. Leave a comment

  1. Very good paper indeed. Congratulations to bring the roles of oligodendrocytes and myelin layer of nerves during learning.

Leave a Reply

Translate »