Previously unknown effect of vitamin A on embryonic development identified.

The signal molecule, retinoic acid, is a product of vitamin A which helps to instruct how different types of tissue are to be formed in the growing embryo. For the first time, researchers from the Lund University have studied the effects of retinoic acid in relation to how blood cells develop from human stem cells. In the laboratory model, the stem cells are exposed to specific signal molecules, thereby developing into blood-producing cells.

The researchers observed that increased levels of retinoic acid drastically reduced the number of blood cells that could be produced. A reduction in the retinoic acid instead increased the production of blood cells by 300 per cent. On the basis of these results, the team propose a new explanatory model of how retinoic acid affects the embryonic development of blood.  The opensource study is published in the journal Stem Cell Reports.

Even if vitamin A is required for a normal pregnancy, the researchers stress that it has long been known that too much vitamin A can be damaging to the foetus, with the risk of foetal malformation and miscarriage. Pregnant women have therefore been recommended to limit their consumption of foods that are high in vitamin A in the form of retinoids, such as liver.

The results show that vitamin A in high doses has a negative effect on blood development. This suggests that there is an additional reason for pregnant women to avoid excessive intake of vitamin A during pregnancy.  While the concept that retinoic acid affects blood cell development has been demonstrated in animal models, this is the first time the experiments have been done using human cells.

The team state that the current study is about finding ways of artificially generating blood stem cells for use in blood stem cell transplants to patients with blood disorders and cancers, who do not have access to a suitable donor.  They summise that the findings increase the medical community’s understanding of the complexity of the process of blood formation during embryonic development.  The team hope that this, together with new future discoveries, will lead to the generation of blood stem cells in the laboratory, which in turn can be used to treat blood disorders and malignancies.

Source:  Lund University

 

Retinoic Acid Signaling Inhibition Increases Colony-Forming Hematopoietic Progenitor Numbers.  (A) Micrographs of CFU colony types from iPSC-derived cultures (20,000 cells per sample).  (B) Cytospin pictures of various hematopoietic cell types collected from colonies and stained with May Grünwald/Giemsa staining, alternatively benzidine.  Retinoic Acid Regulates Hematopoietic Development from Human Pluripotent Stem Cells.  Woods et al 2015.
Retinoic Acid Signaling Inhibition Increases Colony-Forming Hematopoietic Progenitor Numbers. (A) Micrographs of CFU colony types from iPSC-derived cultures (20,000 cells per sample). (B) Cytospin pictures of various hematopoietic cell types collected from colonies and stained with May Grünwald/Giemsa staining, alternatively benzidine. Retinoic Acid Regulates Hematopoietic Development from Human Pluripotent Stem Cells. Woods et al 2015.

 

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.