Study answers debate and proves lymph node metastases doesn’t need new blood vessel growth.


While the use of antiangiogenesis drugs that block the growth of new blood vessels can improve the treatment of some cancers, clinical trials of their ability to prevent the development of new metastases have failed. Now a study from the Massachusetts General Hospital (MGH) may have found at least one reason why.  The new study found that the growth of metastases in lymph nodes, the most common site of cancer spread, does not require new blood vessels and instead takes advantage of existing blood vessels.  The study is published in the Journal of the National Cancer Institute.

Previous studies from the team showed that antiangiogenesis therapies were ineffective in animal models of lymphatic metastasis, however, there was no data to explain the mechanism behind those observations.  Using a novel model the lab developed to facilitate discoveries about the growth and spread of lymph node metastases, the current study shows that angiogenesis does not occur in lymph node metastases, providing a mechanism for resistance to angiogenic therapy in these situations.

For most types of solid tumours previous research shows the presence of lymph node metastases indicates a poorer prognosis and the need for chemotherapy or other systemic treatments that are delivered throughout the body.  However, the team notes that the actual role of lymph node metastases in the spread of cancer has been controversial. They go on to state that some experts believe that it signifies the inherent ability of the primary tumour to spread. Other investigators believe that lymph node metastasis is an essential part of the process leading to metastases in other parts of the body and that metastatic cells in the lymph nodes pass into the bloodstream and seed the growth of new tumours.

To follow up their previous findings that antiangiogenesis therapies could not stop the development or growth of lymph node metastases, the researchers designed the current study. Using a mouse model of cancer that provides direct microscopic access to lymph nodes, they first found that the initiation and growth of node metastases did not involve the development of new blood vessels. They also found no increase in the levels of angiogenesis-inducing factors or in the expression of angiogenesis-related genes in metastatic lymph nodes. In fact, levels of two antiangiogenesis factors were elevated. Analysis of metastatic lymph nodes from human patients with colon or head and neck cancers also revealed no evidence of angiogenesis.

The data findings showed that treating node metastases with two angiogenesis inhibitors that have different mechanisms of action did not change the density of blood vessels or the growth of the metastases. Finally, comparing lymph node metastases from rectal cancer patients who had been treated with the angiogenesis inhibitor bevacizumab with those from patients that received no antiangiogenesis therapy found no difference in blood vessel density within the metastatic nodes. The researchers also found that lymph node metastases appear to have developed from several different tumour cells that lodged in the nodes, not from a single tumour cell as is the case with many but not all distant metastases.

The team surmise that the primary implication of the results is that, since lymph node metastases do not require the development of new blood vessels, antiangiogenic therapy will not inhibit lymphatic metastasis. Other therapies need to be tested for the treatment of patients at risk for lymph node metastasis.  They go on to conclude that now they need to answer the question of whether or not lymph node metastases actually can seed distant metastases, which would indicate how aggressively they need to be treated.

Source:  Massachusetts General Hospital (MGH) Cancer Center

 

Immunofluorescent staining of lymphatic vessels of metastatic lymph nodes draining SCCVII tumors. Immunofluorescent staining for proliferation (Ki67, green) in lymphatic vessels (LYVE-1, red) in normal, contralateral and metastatic (SCCVII, green) lymph nodes.  Investigation of the Lack of Angiogenesis in the Formation of Lymph Node Metastases.   Padera et al 2015.

Immunofluorescent staining of lymphatic vessels of metastatic lymph nodes draining SCCVII tumors. Immunofluorescent staining for proliferation (Ki67, green) in lymphatic vessels (LYVE-1, red) in normal, contralateral and metastatic (SCCVII, green) lymph nodes. Investigation of the Lack of Angiogenesis in the Formation of Lymph Node Metastases. Padera et al 2015.

 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s