Skip to content

Researchers identify protein complex that helps direct growth of axons.

When the nervous system is developing neurons send their axons, the parts of neurons that make up the body’s nerves, to make connections with other neurons. For instance, a neuron in the dorsal spinal cord grows towards attractive signals coming from the ventral spinal cord and cross the midline. The front ends of growing axons have ‘growth cones’ that sniff out attractive and repulsive signals. If a signal of attraction is on the left, new pieces of axon membrane are inserted into the left side of the growth cone, which makes the axon grow towards the attractive signal.

While it is known that attractive signals trigger calcium ions to be released from storage inside the growth cone, it is still unclear how this causes new pieces of the axon to be directed into the correct path of the growth cone.  Now, a study from researchers at the RIKEN Brain Science Institute identifies a protein complex, myosin-Va, that helps direct the growth of axons.  The team state that their findings show that myosin-Va is the missing link between Ca2+ and polarized membrane delivery to the growth cone, telling new pieces of axon where they should go.  The opensource study is published in the journal Cell Reports.

Previous studies show that there are two receptors for the calcium which is released from the endoplasmic reticulum of growth cones. The two receptors, RyR3 and IP3R, are associated with a different kind of calcium release from the endoplasmic reticulum, and with axon growth toward attractive signals. Therefore, the lab hypothesized that in both cases, calcium was being detected by the same sensor, triggering export of membrane vesicles to one side of the growth cone.  The current study investigates what the common calcium sensor is by examining the structures of the two receptors to look for matching docking or binding sites.

The current study shows that the protein myosin-Va interacts with a matching site on both receptors; to test if myosin-Va is needed for axon growth, in vitro neurons were injected with peptides made from the myosin-Va binding region. Results show that Myosin-Va bound to these peptides instead of the Ry3 and IP3 receptors, with the axons repulsed from the signals of attraction.  Data findings show that focal laser-induced photolysis can be used to direct axons to grow in a particular direction without using calcium.

The group also looked at how myosin-Va is involved in transporting membrane vesicles to the growth cone. To do so, they fluorescently labeled VAMP2, a molecule found in the vesicles, and observed what happened when myosin-Va was prevented from binding to the receptors. Data findings show that vesicles export increased, preventing growth in the correct direction.

The team surmise that they show their peptides prevent axons from crossing the spinal cord midline in vivo. For the future, the researchers state that they now plan to use light-mediated control of membrane dynamics to guide axons in vivo, and to manipulate other cell functions such as synaptic growth.

Source: RIKEN Brain Science Institute

 

Response to FLIP of caged RIHCR.  Time-lapse differential interference contrast (DIC) images of a growth cone, showing its turning response to cgRIHCR photolysis at red spots. Time in minutes after the onset of repetitive photolysis is shown. The scale bar represents 10 mm. FLIP: focal laser-induced photolysis; cgRIHCR: caged RyR and IP3R Highly Conserved Region.  Copyright © RIKEN, Japan. All rights reserved.
Response to FLIP of caged RIHCR. Time-lapse differential interference contrast (DIC) images of a growth cone, showing its turning response to cgRIHCR photolysis at red spots. Time in minutes after the onset of repetitive photolysis is shown. The scale bar represents 10 mm. FLIP: focal laser-induced photolysis; cgRIHCR: caged RyR and IP3R Highly Conserved Region. Copyright © RIKEN, Japan. All rights reserved.

Healthinnovations View All

Michelle Petersen is the founder of Healthinnovations, having worked in the health and science industry for over 21 years, which includes tenure within the NHS and Oxford University. Healthinnovations is a publication that has reported on, influenced, and researched current and future innovations in health for the past decade.

Michelle has been picked up as an expert writer for Informa publisher’s Clinical Trials community, as well as being listed as a blog source by the world’s leading medical journals, including the acclaimed Nature-Springer journal series.

Healthinnovations is currently indexed by the trusted Altmetric and PlumX metrics systems, respectively, as a blog source for published research globally. Healthinnovations is also featured in the world-renowned BioPortfolio, BioPortfolio.com, the life science, pharmaceutical and healthcare portal.

Most recently the Texas A&M University covered The Top 10 Healthinnovations series on their site with distinguished Professor Stephen Maren calling the inclusion of himself and his team on the list a reflection of “the hard work and dedication of my students and trainees”.

Michelle Petersen’s copy was used in the highly successful marketing campaign for the mega-hit film ‘Jumanji: The Next Level, starring Jack Black, Karen Gilian, Kevin Hart and Dwayne ‘The Rock’ Johnson. Michelle Petersen’s copywriting was part of the film’s coverage by the Republic TV network. Republic TV is the most-watched English language TV channel in India since its inception in 2017.

An avid campaigner in the fight against child sex abuse and trafficking, Michelle is a passionate humanist striving for a better quality of life for all humans by helping to provide traction for new technologies and techniques within healthcare.

One thought on “Researchers identify protein complex that helps direct growth of axons. Leave a comment

Leave a Reply

Translate »