Skip to content

New technology for reading signals directly from the brain allows typing at 12 words per minute.

It is known that brain–computer interfaces record brain activity and translate the information into useful control signals. They can be used to restore function to people with paralysis by controlling end effectors such as computer cursors and robotic limbs. Communication neural prostheses are brain–computer interfaces which control user interfaces on computers or mobile devices, with directly reading brain signals a highly desirable technology.  Now, a study from researchers at Stanford Bio-X develops a brain-computer interface which reads brain signals to drive a cursor moving over a keyboard. The team state that in an experiment conducted with monkeys, the animals were able to transcribe passages from the New York Times and Hamlet at a rate of up to 12 words per minute.  The study is published in the journal Proceedings of the IEEE.

Previous studies show that other approaches for helping people with movement disorders to type involve tracking eye movements or, as in the case of Stephen Hawking, tracking movements of individual muscles in the face. However, these have limitations, and can require a degree of muscle control that might be difficult for some people. For example, Stephen Hawking wasn’t able to use eye-tracking software due to drooping eyelids and other people find eye-tracking technology tiring.  Directly reading brain signals could overcome some of these challenges and provide a way for people to communicate their thoughts and emotions.  Earlier studies from the lab tested a communication neural prostheses successfully on people with paralysis, however, the typing was slow and imprecise. The current study tests improvements to the speed and accuracy of the technology that interprets brain signals and drives the cursor.

The current study develops a multi-electrode array implanted in the brain to directly read signals from a region that ordinarily directs hand and arm movements used to move a computer mouse.  The algorithms for translating those signals and making letter selections were improved and the combined improvements in typing speed and accuracy tested.  The monkeys testing the technology have been trained to type letters corresponding to what they see on a screen, transcribing passages of New York Times articles or, in one example, Hamlet.  Results show that the technology allows a monkey to type with only its thoughts at a rate of up to 12 words per minute.

Data findings show that the implanted sensor could be stable for several years. The group note that the animals had the implants used to test this and previous iterations of the technology for up to four years prior to this experiment, with no loss of performance or side effects in the animals.  The team state that people using this system would likely type more slowly, while they think about what they want to communicate or how to spell words. They go on to stress that people might also be in more distracting environments and, in some cases, could have additional impairments that slow the ultimate communication rate; therefore, what cannot be quantified is the cognitive load of figuring out which words to say.

The team surmise that their findings demonstrate a communication prosthesis by simulating a typing task with two rhesus macaques implanted with electrode arrays. They go on to add that their results represent the highest known achieved communication rates using a brain–computer interface.  The researchers state that if successful, technologies for directly interpreting brain signals could create a new way for people with paralysis to move and communicate with loved ones.  They conclude that eventually their technology could be paired with the kinds of word completion technology used by smartphones or tablets to improve typing speeds.

Source: Stanford University

 

brain-sensing-technology-developed-by-stanford-scientists-allows-typing-at-12-words-per-minute-neuroinnovations

Healthinnovations View All

Michelle Petersen is the founder of Healthinnovations, having worked in the health and science industry for over 21 years, which includes tenure within the NHS and Oxford University. Healthinnovations is a publication that has reported on, influenced, and researched current and future innovations in health for the past decade.

Michelle has been picked up as an expert writer for Informa publisher’s Clinical Trials community, as well as being listed as a blog source by the world’s leading medical journals, including the acclaimed Nature-Springer journal series.

Healthinnovations is currently indexed by the trusted Altmetric and PlumX metrics systems, respectively, as a blog source for published research globally. Healthinnovations is also featured in the world-renowned BioPortfolio, BioPortfolio.com, the life science, pharmaceutical and healthcare portal.

Most recently the Texas A&M University covered The Top 10 Healthinnovations series on their site with distinguished Professor Stephen Maren calling the inclusion of himself and his team on the list a reflection of “the hard work and dedication of my students and trainees”.

Michelle Petersen’s copy was used in the highly successful marketing campaign for the mega-hit film ‘Jumanji: The Next Level, starring Jack Black, Karen Gilian, Kevin Hart and Dwayne ‘The Rock’ Johnson. Michelle Petersen’s copywriting was part of the film’s coverage by the Republic TV network. Republic TV is the most-watched English language TV channel in India since its inception in 2017.

An avid campaigner in the fight against child sex abuse and trafficking, Michelle is a passionate humanist striving for a better quality of life for all humans by helping to provide traction for new technologies and techniques within healthcare.

5 thoughts on “New technology for reading signals directly from the brain allows typing at 12 words per minute. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.