Synthetic cells use DNA computers to communicate and compute data.

DNA computing is a form of synthetic biology which uses DNA, and biotechnical hardware on the nano-scale to store data and compute information. As the make up of all organisms on earth is based on a DNA coding system which can hold masses of information, DNA is an excellent candidate for data processing on the nano-scale.  The hope is that these nano-processors will someday lead to ‘intelligent drugs’ with DNA computers able to interact with the host’s system for medical purposes.  Now, a study from researchers led by Microsoft Research develops communities of artificial cells which can chemically communicate and perform molecular computations using entrapped DNA logic gates.  The team state their work provides a step towards chemical cognition in synthetic protocells and could be useful in biosensing and therapeutics.  The study is published in the journal Nature Nanotechnology.

Previous studies show that researchers have managed to encode long texts into DNA, with others using the molecule to develop simple logic gates and circuits, with it proven that molecular computers made from DNA are able to use programmable interactions between DNA strands to transform DNA inputs into coded outputs.  However, DNA computers are slow because they operate in a chemical soup where they rely on random molecular diffusion to execute a computational step.  The current study assembles these processes inside artificial protocells capable of sending highly targetted DNA input and output signals to each other at faster speeds.

The current study develops a new technique, BIO-PC (Biomolecular Implementation Of Protocell communication), based on communities of semi-permeable capsules containing a diversity of DNA logic gates which together can be used for molecular sensing and computation.  Results show that compartmentalisation of the DNA computers increases the speed of the computational circuits, reduces cross-talk between the DNA strands, and enables molecular circuits to function in serum.  Data findings show that the protocell capsules help to increase the speed of the molecular computations and protects the entrapped DNA strands from degradation by enzymes present in blood.

The lab state the ability to chemically communicate between smart artificial cells using DNA logic codes opens up new opportunities in unconventional computing and life-like microscale systems.  They go on to add that their work is also an important step towards the development of smart, ‘intelligent’ drugs which may allow better control of medication with fewer side-effects, and at lower cost due to the availability of synthesized DNA.

The team surmise that they use synthetic biology to develop artificial protocells which encapsulate DNA computers which can can sense, process and respond to DNA-based messages.  For the future, the researchers state that this new approach lays the groundwork for using protocell communication platforms to bring embedded molecular control circuits closer to practical applications in medicine.

Source: University of Bristol


dna computer synthetic biology healthinnovations health science

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.