Skip to content

Brain waves detected in lab-grown mini-brains.

Many ethical, as well as supply issues, surround the use of human brain tissue in research. Hence, stem cells are used to develop mini-brains or ‘organoids’, a pea-sized model of the human brain, in a lab dish.

By using a culture medium mimicking the environment of brain development, the stem cells self-organize into a 3D structure resembling the developing human brain. Conversely, only a handful of studies have successfully used 3D cell culture techniques to achieve this.

Brainwaves in brain organoids

Now, a study from researchers at the University of California, San Diego engineers miniature brains from stem cells that spontaneously develop functional neural networks. The team states despite being a million times smaller than human brains, their lab-grown brains are the first to produce brainwaves resembling those of preterm babies. The opensource study is published in the journal Cell Stem Cell.

Previous studies show research in early brain development has been slow, in part due to the fact it is difficult to obtain fetal-tissue samples for analysis and to examine a fetus in utero. Therefore, there is much interest in the development of brain ‘organoids’, which, when grown in 3D cultures, can develop some of the complex structures seen in the brains of animals or humans.

Conversely, there is no evidence these organoids develop complex neural network activity that appears when neurons are mature and become interconnected. The current study develops lab-grown brains capable of forming intricate networks of neurons producing strong brainwaves. 

The current study optimizes the 3D cell culture medium to enable brain organoids to become more mature than previous models. Hundreds of organoids were grown for 10 months, using multi-electrode arrays to monitor their neural activities. Results show bursts of brainwaves were detected from organoids at about two months. Data findings show the signals were sparse and had the same frequency or pattern seen in very immature human brains. 

Results show as the organoids continue to grow they produce brainwaves at different frequencies. Additionally, the signals appear more regularly, suggesting a gradual development of neural networks over time. The lab explains to compare the brainwave patterns of organoids with those of human brains early in development, they used an algorithm modeling brainwaves recorded from 39 premature babies between six and nine-and-a-half months old.

Organoids are not self-aware

They observed the algorithm was able to predict how many weeks the organoids have developed in culture, which suggests these organoids and the human brain share a similar growth trajectory. They stress it’s highly unlikely their organoids are self-aware.

The team surmises they have detected functional brainwaves from mini-brains they grew in 3D cell culture medium. For the future, the researchers state findings suggest these organoids are suitable for the investigation into neural network formation at the early and late stages of human brain development.

Source: University of California, San Diego

 Don’t miss the latest discoveries from the health innovator community:

Healthinnovations View All

Michelle Petersen is the founder of Healthinnovations, having worked in the health and science industry for over 21 years, which includes tenure within the NHS and Oxford University. Healthinnovations is a publication that has reported on, influenced, and researched current and future innovations in health for the past decade.

Michelle has been picked up as an expert writer for Informa publisher’s Clinical Trials community, as well as being listed as a blog source by the world’s leading medical journals, including the acclaimed Nature-Springer journal series.

Healthinnovations is currently indexed by the trusted Altmetric and PlumX metrics systems, respectively, as a blog source for published research globally. Healthinnovations is also featured in the world-renowned BioPortfolio,, the life science, pharmaceutical and healthcare portal.

Most recently the Texas A&M University covered The Top 10 Healthinnovations series on their site with distinguished Professor Stephen Maren calling the inclusion of himself and his team on the list a reflection of “the hard work and dedication of my students and trainees”.

Michelle Petersen’s copy was used in the highly successful marketing campaign for the mega-hit film ‘Jumanji: The Next Level, starring Jack Black, Karen Gilian, Kevin Hart and Dwayne ‘The Rock’ Johnson. Michelle Petersen’s copywriting was part of the film’s coverage by the Republic TV network. Republic TV is the most-watched English language TV channel in India since its inception in 2017.

An avid campaigner in the fight against child sex abuse and trafficking, Michelle is a passionate humanist striving for a better quality of life for all humans by helping to provide traction for new technologies and techniques within healthcare.

One thought on “Brain waves detected in lab-grown mini-brains. Leave a comment

Leave a Reply

Translate »