Skip to content

Synthetic bacteriophages with programmable bacteria specificity engineered.

A bacteriophage, also known as a phage, is a naturally-occurring virus with the awesome capability to infect and kill bacteria by injecting their DNA into bacterial cells which replicates until it kills the host. Phages are the most abundant microorganism in the natural world, occurring in seawater, soil, and in humans. Phages are highly host-specific, only infecting and killing an individual species of bacteria. Compared to antibiotics, phages do not indiscriminately kill bacteria, meaning they do not damage the beneficial gut microbiota, leaving it intact. This specificity has led to phages being seen as magic bullets in the fight against antibiotic resistance. However, the high specificity of phages is also a disadvantage, with bacteriophages having to be isolated from their natural environment, tested against the bacterial strain, and having their genomes sequenced to ensure they are safe for use in humans in time-consuming and expensive tests. Now, a study from researchers at ETH Zurich produces synthetic phages with the ability to recognize and attack a broader range of bacterial strains beyond their natural host range. The team states their platform paves the way for the therapeutic use of standardized, synthetic bacteriophages to treat bacterial infections. The opensource study is published in the journal Cell Reports.

Previous studies show phages recognize their target bacteria with unmatched specificity, a property mediated by receptor binding proteins. These receptor binding proteins, which are found on the bottoms of phage tails, recognize specific receptors on the exposed cell walls of a target bacterium. As phages are extremely diverse in structure and genetic composition, each isolate or cocktail component must be sequenced and properly characterized before it can be used safely in a medical application. To circumvent these issues, it may be possible to engineer a limited number of well-characterized phages to bind and infect the strains of interest. However, this approach requires an in-depth molecular understanding of RBP-host interactions, which is often lacking. The current study uses X-ray crystallography to decipher the atomic structure of the first receptor binding protein from a Listeria phage, to re-engineer synthetic phages.

The current study assembles new receptor binding proteins by fitting together protein components derived from different phages to provide different host specificities. Results show the genetically modified Listeria phages with their designer receptor binding proteins yield in phages capable of recognizing and killing new strains of the target bacterium. Data findings show although these artificial phages attack different new hosts, they all share the same genome, except for the gene encoding their receptor binding proteins.

The lab explains a mixture of phage variants could now be used to treat patients, covering a broad range of hosts by administering several synthetically produced phages in a single, quick to make, targetted treatment. They go on to add the synthetic phages could also be used to detect pathogenic strains among mixed bacterial populations.

The team surmises they have successfully reprogrammed a phage bacterial specificity through synthetic receptor binding proteins. For the future, the researchers state they now plan to engineer artificial phages to combat antibiotic-resistant pathogens, such as Staphylococcus aureus, Klebsiella pneumoniae, and Enterococcus species.

Source: Institute of Food, Nutrition and Health (IFNH) at ETH Zurich

Get Healthinnovations delivered to your inbox:

Healthinnovations View All

Michelle Petersen is the founder of Healthinnovations, having worked in the health and science industry for over 21 years, which includes tenure within the NHS and Oxford University. Healthinnovations is a publication that has reported on, influenced, and researched current and future innovations in health for the past decade.

Michelle has been picked up as an expert writer for Informa publisher’s Clinical Trials community, as well as being listed as a blog source by the world’s leading medical journals, including the acclaimed Nature-Springer journal series.

Healthinnovations is currently indexed by the trusted Altmetric and PlumX metrics systems, respectively, as a blog source for published research globally. Healthinnovations is also featured in the world-renowned BioPortfolio, BioPortfolio.com, the life science, pharmaceutical and healthcare portal.

Most recently the Texas A&M University covered The Top 10 Healthinnovations series on their site with distinguished Professor Stephen Maren calling the inclusion of himself and his team on the list a reflection of “the hard work and dedication of my students and trainees”.

Michelle Petersen’s copy was used in the highly successful marketing campaign for the mega-hit film ‘Jumanji: The Next Level, starring Jack Black, Karen Gilian, Kevin Hart and Dwayne ‘The Rock’ Johnson. Michelle Petersen’s copywriting was part of the film’s coverage by the Republic TV network. Republic TV is the most-watched English language TV channel in India since its inception in 2017.

An avid campaigner in the fight against child sex abuse and trafficking, Michelle is a passionate humanist striving for a better quality of life for all humans by helping to provide traction for new technologies and techniques within healthcare.

One thought on “Synthetic bacteriophages with programmable bacteria specificity engineered. Leave a comment

  1. I believe a Cambridge UK company have been using this technique for ESKAPE organisms for years and even patented the approach. Their name is Phico Therapeutics Ltd . I also believe they have manufactured the product and on their way to toxicology and clinical studies . The CEO is named Dr Heather Fairhead and she can tell you more .

    Liked by 1 person

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.