Skip to content

A tissue-engineered uterus supports live births in rabbits.

The female uterus is essential for reproduction in all mammals, meaning any trauma or disease affecting this organ detrimentally could compromise a woman’s ability to conceive or carry a viable fetus to term. The transplant of donor uteri has demonstrated potential in the reversal of infertility caused by a dysfunctional uterus even though it requires the use of anti-rejection therapeutics. There has also been much interest surrounding bioengineered uteri using biodegradable scaffolding seeded with the patient’s own cells, avoiding the risk of disease or the need for antirejection drugs accompanying the transplant of donor organs. The use of this regenerative technique has previously been trialed in humans resulting in the successful implantation of bioengineered bladders, blood vessels, urethras, and vaginas in human patients. Now, a study from researchers at the Wake Forest Institute for Regenerative Medicine (WFIRM) bioengineer uteri capable of supporting fertilization, fetal development, and live birth in rabbits. The team states this approach may someday provide a solution for women faced with the inability to get pregnant due to an irregular uterus. The opensource study is published in the journal Nature Biotechnology.

Previous studies have indicated the regeneration of uteri is only successful where small defects are involved, making translation to larger animals and humans unfeasible. In multiple rodent studies, small defects in uteri were successfully repaired using an assortment of constituents such as non-degradable synthetic polymer scaffolds, biodegradable synthetic polymer scaffolds, naturally derived scaffolds, and scar tissue. However, attempts at regenerating larger uterine defects using these strategies have failed. The current study bioengineers uteri in large animal studies that went on to develop normal, native structures and restore normal reproductive function.

The current study observes rabbits who had undergone a subtotal uterine excision and were reconstructed using either a scaffold seeded with the animals’ own cells or unseeded polymer scaffolds or by suturing only, a normal control group was also part of the study group. The biodegradable polymer scaffolds were 6–8 cm in length, and 2.5 cm in width, composed of poly-dl-lactide-coglycolide (PLGA)-coated polyglycolic acid (PGA) seeded with the rabbit’s personal uterine cells. Six months after the cell-seeded and unseeded scaffolds were implanted, the female rabbits were mated with fertile male rabbits. Results show after this period of time only the cell-seeded uteri developed natural structures, such as stroma, luminal/glandular epithelium, vascularized mucosa, and two-layered myometrium. Data findings show only rabbits possessing cell-seeded engineered uteri were able to support a normal pregnancy, with forty percent of this group capable of supporting regular fetal development to term and live birth.

The lab states their cell-seeded constructs supported tissue expansion at more than ten times its own weight and reconstruction during pregnancy to accommodate the growing fetus, placenta, and amniotic fluid. They go on to add the resultant offspring’s body weights were similar to those of the normal controls, suggesting normal placental function. They conclude although the number of fetuses per pregnancy was lower than in the normal controls, the engineered uteri supported fetal development and pregnancies to term with live births in four out of fourteen cases.

The team surmises their regenerative technique used to create uterine tissue is able to support normal pregnancies and fetal development comparable to those produced in a normal uterus. For the future, the researchers state this approach may provide a pathway to pregnancy for women with a defective uterus, however, further preclinical studies must be carried out before clinical trials are designed.

Source: ScienceDaily

Get Healthinnovations delivered to your inbox:

Healthinnovations View All

Michelle Petersen is the founder of Healthinnovations, having worked in the health and science industry for over 21 years, which includes tenure within the NHS and Oxford University. Healthinnovations is a publication that has reported on, influenced, and researched current and future innovations in health for the past decade.

Michelle has been picked up as an expert writer for Informa publisher’s Clinical Trials community, as well as being listed as a blog source by the world’s leading medical journals, including the acclaimed Nature-Springer journal series.

Healthinnovations is currently indexed by the trusted Altmetric and PlumX metrics systems, respectively, as a blog source for published research globally. Healthinnovations is also featured in the world-renowned BioPortfolio,, the life science, pharmaceutical and healthcare portal.

Most recently the Texas A&M University covered The Top 10 Healthinnovations series on their site with distinguished Professor Stephen Maren calling the inclusion of himself and his team on the list a reflection of “the hard work and dedication of my students and trainees”.

Michelle Petersen’s copy was used in the highly successful marketing campaign for the mega-hit film ‘Jumanji: The Next Level, starring Jack Black, Karen Gilian, Kevin Hart and Dwayne ‘The Rock’ Johnson. Michelle Petersen’s copywriting was part of the film’s coverage by the Republic TV network. Republic TV is the most-watched English language TV channel in India since its inception in 2017.

An avid campaigner in the fight against child sex abuse and trafficking, Michelle is a passionate humanist striving for a better quality of life for all humans by helping to provide traction for new technologies and techniques within healthcare.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.