Skip to content

Plastic changes to the brain due to TMS imaged for the first time.

Tinnitus, migraine, epilepsy, depression, schizophrenia, Alzheimer’s; all these are examples of diseases with neurological causes, the treatment and study of which is more and more frequently being carried out by means of magnetic stimulation of the brain. However, the method’s precise mechanisms of action have not, as yet, been fully understood.

Researchers from the Institut für Neuroinformatik are the first to succeed in visualising the neuronal effects of this treatment method with high-res images.  The opensource study is published in the Proceedings of the National Academy of Sciences (PNAS).

Transcranial magnetic stimulation (TMS) is a painless, non-invasive stimulation method, where an electromagnetic coil held above the head is used to generate a strong magnetic field. This method is deployed to activate or inhibit specific brain regions. Even though the number of its medical applications is constantly on the increase, TMS’ precise neuronal mechanisms of action are not, as yet, very well understood.

That is because imaging used for humans, such as fMRI (functional magnetic resonance imaging), doesn’t possess the temporal resolution necessary for recording neural activities in milliseconds. More rapid measurement methods, such as EEG or MEG, on the other hand, are affected by the induced magnetic field, with the results that strong interferences are generated that cover important information regarding immediate TMS-based changes to brain activities.

High-res images of TMS effects have now for the first time been successfully generated by RUB researchers in animal testing. The group utilised voltage-sensitive dyes which, anchored in cell membranes, send out fluorescent light signals once the neurons were activated or inhibited. By using light, the researchers avoided the problem of measurement of artefacts occurring due to magnetic fields.

It can now be demonstrated in real time how one single TMS pulse suppresses brain activity across a considerable region, most likely through mass activation of inhibiting brain cells. With higher TMS frequencies, each additional TMS pulse generates an incremental increase in brain activity.  This results in a higher cortical activation state, which opens up a time window for plastic changes.

The increased neuronal excitability may be utilised to effect specific reorganisation of cell connections by means of targeted learning processes. For example, through visual training after TMS, the ability to identify image contours improves; moreover, a combination of these methods enhances contrast perception in patients with amblyopia, a disorder of sight acquired during child development.

For many neurological diseases of the brain, such as epilepsy, depression and stroke, specific models have been developed.  Deployed in animal testing, the current study has delivered high spatiotemporal resolution imaging data of cortical activity changes.

The team are hoping that these data will enable the medical community to optimise TMS parameters and learning processes in a targeted manner, which are going to be used in future to adapt this technology for medical treatment of humans.

Source:  Ruhr University Bochum

Get Healthinnovations delivered to your inbox:

Healthinnovations View All

Michelle Petersen is the founder of Healthinnovations, having worked in the health and science industry for over 21 years, which includes tenure within the NHS and Oxford University. Healthinnovations is a publication that has reported on, influenced, and researched current and future innovations in health for the past decade.

Michelle has been picked up as an expert writer for Informa publisher’s Clinical Trials community, as well as being listed as a blog source by the world’s leading medical journals, including the acclaimed Nature-Springer journal series.

Healthinnovations is currently indexed by the trusted Altmetric and PlumX metrics systems, respectively, as a blog source for published research globally. Healthinnovations is also featured in the world-renowned BioPortfolio, BioPortfolio.com, the life science, pharmaceutical and healthcare portal.

Most recently the Texas A&M University covered The Top 10 Healthinnovations series on their site with distinguished Professor Stephen Maren calling the inclusion of himself and his team on the list a reflection of “the hard work and dedication of my students and trainees”.

Michelle Petersen’s copy was used in the highly successful marketing campaign for the mega-hit film ‘Jumanji: The Next Level, starring Jack Black, Karen Gilian, Kevin Hart and Dwayne ‘The Rock’ Johnson. Michelle Petersen’s copywriting was part of the film’s coverage by the Republic TV network. Republic TV is the most-watched English language TV channel in India since its inception in 2017.

An avid campaigner in the fight against child sex abuse and trafficking, Michelle is a passionate humanist striving for a better quality of life for all humans by helping to provide traction for new technologies and techniques within healthcare.

Leave a Reply

Translate »