Skip to content

New microbiota-based mode of antibiotic-resistant spread identified.

Bacteria are becoming increasingly resistant to antibiotics, with much work needed to stem the rise of multi-drug resistance. Often, resistance is mediated by genes, which can simply jump from one bacterial population to the next when antibiotics are being used. This is one of the many mechanisms of antibiotic resistance which is causing major concern around the world. Now, a study from researchers led by ETH Zurich identifies an additional, previously unknown mechanism responsible for spreading resistance in the intestinal microbiota, without the use of antibiotics. The team states restricting the use of antibiotics, which is an important facet in the fight against antibiotic resistance, is not sufficient to prevent the spread. The opensource study is published in the journal Nature.

Previous studies show the DNA of bacteria is contained in a single circular molecule, called the bacterial chromosome. In addition to the chromosome, bacteria often contain plasmids, small circular DNA molecules which the microbes can pick up from other bacterial cells during conjugation or the environment. Plasmids often carry multiple antibiotic resistance genes, contributing to the spread of multi-drug resistance. It is a long-held theory the global spread of antibiotic-resistant plasmids is fuelled by antibiotic usage in human and veterinary medicine. The current study shows these bacterial plasmids transfer antibiotic-resistant genes to both the same and different bacterial species without the use of antibiotics.

The current study utilizes mice to demonstrate dormant salmonella, capable of forming persistent phenotypes of bacteria, can pass their resistance genes in the gut on to other same species bacteria or different species, such as E. coli from the normal intestinal flora. Results show persistent bacteria or ‘persisters’, subpopulations of bacteria can survive antibiotics by reversibly adapting their physiology, are very efficient at sharing their resistance plasmid genes as soon as they awaken from their dormant state and encounter other bacteria susceptible to gene transfer.

The lab explains by exploiting their dormant persistent host bacterium in reservoirs, the resistance plasmids can survive for a prolonged period in one host before transferring into other bacteria. They go on to add this speeds up the spread of multi-drug resistant plasmids, they stress this transfer happens regardless of whether antibiotics are present or not. The group suggests vaccination reduces the formation of reservoirs of persistent salmonella bacteria phenotype, as well as subsequent plasmid transfer.

The team surmises they have shown microbiota can pass on multi-drug resistant genes without the presence of antibiotics. For the future, the researchers state they now plan to investigate whether it’s possible to control the spread of resistance in livestock populations with probiotics or with a vaccination against salmonella.

Source: ETH Zurich

 

Get Healthinnovations delivered to your inbox:

 

Healthinnovations View All

Michelle Petersen is the founder of Healthinnovations, having worked in the health and science industry for over 21 years, which includes tenure within the NHS and Oxford University. Healthinnovations is a publication that has reported on, influenced, and researched current and future innovations in health for the past decade.

Michelle has been picked up as an expert writer for Informa publisher’s Clinical Trials community, as well as being listed as a blog source by the world’s leading medical journals, including the acclaimed Nature-Springer journal series.

Healthinnovations is currently indexed by the trusted Altmetric and PlumX metrics systems, respectively, as a blog source for published research globally. Healthinnovations is also featured in the world-renowned BioPortfolio, BioPortfolio.com, the life science, pharmaceutical and healthcare portal.

Most recently the Texas A&M University covered The Top 10 Healthinnovations series on their site with distinguished Professor Stephen Maren calling the inclusion of himself and his team on the list a reflection of “the hard work and dedication of my students and trainees”.

Michelle Petersen’s copy was used in the highly successful marketing campaign for the mega-hit film ‘Jumanji: The Next Level, starring Jack Black, Karen Gilian, Kevin Hart and Dwayne ‘The Rock’ Johnson. Michelle Petersen’s copywriting was part of the film’s coverage by the Republic TV network. Republic TV is the most-watched English language TV channel in India since its inception in 2017.

An avid campaigner in the fight against child sex abuse and trafficking, Michelle is a passionate humanist striving for a better quality of life for all humans by helping to provide traction for new technologies and techniques within healthcare.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.