Large scale human study shows longer telomere length leads to higher cancer mortality.

Telomeres are short stretches of repeated nucleotides that protect the ends of chromosomes. In somatic cells, these protective sequences become shorter with each cellular replication until a critical length is reached, which can trigger cell death.  In actively replicating cells such as germ cells, embryonic stem cells, and blood stem cells of the bone marrow, the enzyme telomerase replenishes these protective caps to ensure adequate replication.

Cancer cells also seem to have the ability to activate telomerase, which allows them to keep dividing indefinitely, with dire consequences for the patient. However, according to a study from Copenhagen University the extent to which cancer cells can utilize telomerase may depend on which variants of the genes related to telomerase activity are expressed in an individual’s cells.  The study is published in the JNCI: Journal of the National Cancer Institute.

The team explain that telomere shortening is an inevitable, age-related process, but it can also be exacerbated by lifestyle factors such as obesity and smoking. Thus, some previous studies have found an association between short telomeres and high mortality, including cancer mortality, while others have not.

A possible explanation for the conflicting evidence, state the team, may be that the association found between short telomeres and increased cancer mortality was correlational but other factors (age and lifestyle), not adjusted for in previous studies, were the real causes. Genetic variation in several genes associated with telomere length (TERC, TERT, OBFC1) is independent of age and lifestyle. Thus, a genetic analysis called a Mendelian randomization could eliminate some of the confounding and allow the presumably causal association of telomere length and cancer mortality to be studied.

To perform this analysis the team used data from two prospective cohort studies, the Copenhagen City Heart Study and the Copenhagen General Population Study, including 64,637 individuals followed from 1991-2011. Participants completed a questionnaire and had a physical examination and blood drawn for biochemistry, genotyping, and telomere length assays.

In the current study the group took information on physical characteristics such as body mass index, blood pressure, and cholesterol measurements, as well as smoking status, alcohol consumption, physical activity, and socioeconomic variables for each subject. In addition to the measure of telomere length for each subject, three single nucleotide polymorphisms of TERC, TERT, and OBFC1 were used to construct a score for the presence of telomere shortening alleles.

The data findings showed that a total of 7607 individuals died during the study, 2420 of cancer. Overall, as expected, decreasing telomere length as measured in leukocytes was associated with age and other variables such as BMI and smoking and with death from all causes, including cancer.

In contrast, the results showed a higher genetic score for telomere shortening was associated specifically with decreased cancer mortality, but not with any other causes of death, suggesting that the slightly shorter telomeres in the cancer patients with the higher genetic score for telomere shortening might be beneficial because the uncontrolled cancer cell replication that leads to tumour progression and death is reduced.

The team surmise that long telomeres may represent a survival advantage for cancer cells, allowing multiple cell divisions leading to high cancer mortality.

Source:   Copenhagen University


Studies Probe Role of Telomere Length in Predicting, Modulating Cancer Risk.  Hampton et al 2011.

Studies Probe Role of Telomere Length in Predicting, Modulating Cancer Risk. Hampton et al 2011.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s