Skip to content

Researchers identify previously unknown telomere-specific protein.

Telomeres are our own personal inbuilt clock found at the end of chromosomes dictating how and when we age, with these protective caps ensuring no damage comes to the DNA held within.  A person is born with telomeres of a certain length, and every time a cell divides, telomeres get a little bit shorter.  Once the telomere is too short, the cell cannot divide anymore, therefore, researchers are curious whether lengthening telomeres could slow aging, with many studies using a specialized enzyme called telomerase to fine-tune the biological clock.  Now, a study from researchers at The Scripps Research Institute identifies a previously unknown protein that fine-tunes the cellular clock involved in aging.  The team states a novel protein, named TZAP (Telomeric Zinc finger-Associated Protein), binds the ends of chromosomes and determines how long telomeres can be.  The study is published in the journal Science.

Previous studies show understanding telomere length is crucial because telomeres set the lifespan of all cells in the body on an individual basis, dictating critical processes such as aging and the incidence of cancer.  This cellular clock needs to be finely tuned to allow a sufficient amount of cell division to develop differentiated tissues and maintain renewable tissues in the body, and, at the same time, to limit the proliferation of cancerous cells.  For the last few decades, the only proteins known to specifically bind telomeres is the telomerase enzyme and a protein known as the Shelterin complex.  The current study shows TZAP controls a process called telomere trimming, ensuring the telomeres do not become too long.

The current study shows the reduced concentration of the shelterin complex at long telomeres results in TZAP binding and the initiation of telomere trimming.  Results show TZAP binding to long telomeres represents the switch that triggers telomere trimming, setting the upper limit of telomere length, which then allows cells to proliferate.

Data findings show TZAP binds preferentially to long telomeres that have a low concentration of shelterin complex, competing with the telomeric repeat binding factors TRF1 and TRF2.  Results show when localized at telomeres, TZAP triggers telomere trimming, a process resulting in the rapid deletion of telomeric repeats.

The team surmises they have identified a previously unknown specific telomere-associated protein, named TZAP.  For the future, the researchers propose a model for telomere length regulation in mammalian cells based on their new discovery.

Source: The Scripps Research Institute (TSRI) 

Get Healthinnovations delivered to your inbox:

Healthinnovations View All

Michelle Petersen is the founder of Healthinnovations, having worked in the health and science industry for over 21 years, which includes tenure within the NHS and Oxford University. Healthinnovations is a publication that has reported on, influenced, and researched current and future innovations in health for the past decade.

Michelle has been picked up as an expert writer for Informa publisher’s Clinical Trials community, as well as being listed as a blog source by the world’s leading medical journals, including the acclaimed Nature-Springer journal series.

Healthinnovations is currently indexed by the trusted Altmetric and PlumX metrics systems, respectively, as a blog source for published research globally. Healthinnovations is also featured in the world-renowned BioPortfolio, BioPortfolio.com, the life science, pharmaceutical and healthcare portal.

Most recently the Texas A&M University covered The Top 10 Healthinnovations series on their site with distinguished Professor Stephen Maren calling the inclusion of himself and his team on the list a reflection of “the hard work and dedication of my students and trainees”.

Michelle Petersen’s copy was used in the highly successful marketing campaign for the mega-hit film ‘Jumanji: The Next Level, starring Jack Black, Karen Gilian, Kevin Hart and Dwayne ‘The Rock’ Johnson. Michelle Petersen’s copywriting was part of the film’s coverage by the Republic TV network. Republic TV is the most-watched English language TV channel in India since its inception in 2017.

An avid campaigner in the fight against child sex abuse and trafficking, Michelle is a passionate humanist striving for a better quality of life for all humans by helping to provide traction for new technologies and techniques within healthcare.

One thought on “Researchers identify previously unknown telomere-specific protein. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.